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IMPROVEMENT OF CORNER SHIELDING BY AN
ABSORBING CYLINDER
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This paper continues the topic of the preceding papers [1–3] about sound fields
in wedge-shaped spaces, especially of reference [3] which deals with the scattering
of sound by building corners. A cylinder surrounding the corner is used there as
an analytical instrument to avoid singularities of the field formulation in the origin
(the cylinder radius there finally was set to zero). In the present paper the sound
field formulation of reference [3] is repeated, with the aim being to study the
potential of an absorbing cylinder which surrounds a scattering corner to improve
the sound shielding by the corner. The improvement of the corner shielding can
be rather high, if a suitable surface admittance can be given to the cylinder. The
question of the realization of a suitable cylinder surface admittance is discussed.
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1. INTRODUCTION

The present paper is a member of a series of previous papers [1–3], which all have
as their common topic sound field analysis in wedge-shaped spaces. The common
aim is the field synthesis with wedge modes, which are mutually orthogonal
between the wedge flanks. The last contribution [3], deals with sound scattering
at rigid corners. In the analysis a hypothetical cylinder is used surrounding the
corner in order to avoid the singularities of wedge modes at the origin. There the
cylinder was finally eliminated by letting its radius go to zero. The sound field
could be split into two parts, one part containing the corner without the cylinder,
and a second part representing the contribution to the sound field by the cylinder.
This field representation, which will shortly be repeated below, is the basis for the
present study, in which the possible contribution of an absorbing cylinder around
a corner to the sound shielding by the corner (corner shielding) is investigated.

A typical arrangement is illustrated in Figure 1. A corner with rigid flanks results
in a wedge-shaped field space with a wedge angle U0 (e.g., U0 =270° in the figure).
The corner is surrounded with a cylinder of radius a which is supposed to be locally
absorbing with a surface admittance G. Two types are considered for the incident
sound. In the first case it is produced by a line source (parallel to the corner) at
Q with the coordinates (rq , qq ). Then two zones of the sound field must be
distinguished: zone (1) with 0E rE rq , and zone (2) with re rq . The second case
with an incident plane wave is obtained by letting rq:a; then all the field belongs

0022–460X/99/040559+21 $30.00/0 7 1999 Academic Press



q

0

rq

per

Q

P

1

2

2aø

b

. . 560

Figure 1. Scheme and coordinates of a rigid corner with ‘‘wedge angle’’ U0 and a line source at
Q with coordinates (rq , qq ). The corner is surrounded by a locally absorbing cylinder with radius
a. The source radius rq defines two field zones (1) and (2).

to zone (1). (Note that in subsequent figures, the coordinates (r, q) in Figure 1 are
sometimes expressed in their Cartesian forms x= r cos q and y= r sin q.)

Any wedge angle 0QU0 E 2p is possible. Thus the theory covers some special
cases, as indicated in Figure 2, which individually are of some interest in
applications. The first sketch in Figure 2 with U0 =180° corresponds to a
semicircular absorbing dam on a rigid ground. This case was described in reference
[4] where it was compared with dams of semielliptic cross sections. The last sketch
in Figure 2 with U0 =360° represents a thin rigid screen with an absorbing cylinder
atop. This topic was treated by Möser [5], and at the same time by the author [6].
So the present paper is concentrated on arrangements of the second sketch in
Figure 2: corners of buildings equipped with an absorbing cylinder. One can
imagine situations where this problem is of some practical importance. Many
houses in cities are oriented with the windows of living and sleeping rooms towards
inner courtyards; such courtyards are often conceived in modern residential
quarters as rest areas, protected from the traffic noise by the noise shielding of
the building. A similar situation exists with a penthouse on the roof of a building.
There the noise shielding is performed by only one building corner. Usually the
attitude of acousticians is to take the noise level behind the building corner as it
is, as if there were no possibility of noise control engineering in the case of building
corners.

First the sound field formulation from reference [3] is repeated. Then some
general guidelines will be presented for the design of appropriate absorbing
cylinders. Finally numerical examples will be given for the noise level change
DL(r, q) produced by an absorbing cylinder in a field point r, q. This noise level
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Figure 2. The range of application of the theory covers a semicircular absorbing dam on a rigid
ground, a rigid building corner surrounded by an absorbing cylinder, and a rigid, thin screen with
an absorbing cylinder atop.

change DL can be added to the noise level L(r, q) in r, q which would exist there
if there were no cylinder at the corner (see reference [3] for the computation of
L(r, q)).

2. SINGLE CORNER SCATTERING WITH A LINE SOURCE

The coordinates are as shown in Figure 1, with b:a a line source at Q with
the source coordinates (rq , qq ). The source radius rq defines the zone (1) with
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0E rE rq and the zone (2) with re rq . Evidently the sound field must be steady
at r= rq , except at q= qq . The cylinder with diameter 2a at the corner is supposed
to have a locally reacting surface with a radial surface admittance G (a rigid
cylinder with G=0 is just a special case).

Field formulations are of the form

p(r, q, z)= s
h

Rh (r)T(hq)Z(kzz), (1)

where the factor Z(kzz) may be one of the functions e2jkzz, cos (kzz), sin (kzz) or
a linear combination thereof with a given wave number kz . Because Z(kzz) will
appear as a factor in all field representations, one can drop it (like the time factor
ejvt); the only consequence of a value kz $ 0 will be a modification of the radial
wave number k2

0:k2 = k2
0 − k2

z . For the numerical examples below it will be
supposed that for kz =0, Z(kzz)=1, for reasons of simplicity. With two rigid
flanks the azimuthal function has the form T(hq)= cos (hq). The terms under the
sum of equation (1) are orthogonal over q in 0E qEU0, and they satisfy the
boundary conditions at the flanks if they are solutions of the characteristic
equation

(hnU0) tan (hnU0)=0. (2)

Solutions of equation (2) are hn = np/U0; n=0, 1, 2, . . . . The wave equation gives
for the radial function Rh (r) the Bessel differential equation

0 12

1r2 +
1
r

1

1r
+ k2 −

h2
n

r21Rhn (r)=0, (3)

with general solutions of the form

Rh (r)=Rn (kr)= cnH(1)
hn

(kr)+ dnH(2)
hn

(kr), (4)

where H(i)
hn
(kr) are Hankel functions, propagating radially inward for i=1 and

outward for i=2. They have the orders hn e 0 which either are rational or real
in general (depending on the value of U0).

Sound field formulations in zone (1), with aE rQ rq are

p1(r, q)= s
ne 0

AnH(2)
hn

(krq )[H(1)
hn

(kr)+ rnH(2)
hn

(kr)] cos (hnq),

Z0vr1 =
jk
k0

s
ne 0

AnH(2)
hn

(krq )[H'(1)
hn (kr)+ rnH'(2)

hn (kr)] cos (hnq), (5)
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and in the zone (2), with rq Q rQa they are

p2(r, q)= s
ne 0

An [H(1)
hn

(krq )+ rnH(2)
hn

(krq )]H(2)
hn

(kr) cos (hnq),

Z0vr2 =
jk
k0

s
ne 0

An [H(1)
hn

(krq )+ rnH(2)
hn

(krq )]H'(2)
hn (kr) cos (hnq). (6)

A prime indicates the derivative with respect to the argument. This formulation
satisfies the boundary conditions at the flanks and Sommerfeld’s far field
condition; it is steady in the sound pressure at the zone limit r= rq . It contains
inward and outward propagating modes for rQ rq and only outward propagating
modes in rq rq . The factors rn evidently are radial reflection factors defined at the
surface of the cylinder covering the origin. Due to the orthogonality of the modes,
the boundary condition at the cylinder must be obeyed term-wise, giving

rn =−
Z0GH(1)

hn
(ka)+ j

k
k0

H'(1)
hn (ka)

Z0GH(2)
hn

(ka)+ j
k
k0

H '(2)
hn (ka)

. (7)

The still available boundary condition is the fitting of the radial particle velocities
at the zone limit r= rq to the volume flow of the line source: i.e., the relation

vr2(rq +0)− vr1(rq −0) =
!

q d(q− qq ), (8)

where q is the volume flow density of the source and d the Dirac delta function.
The volume flow density q of the source can be expressed by the free field sound
pressure pQ (r) at a distance r as

Z0q=
4

k0rH(2)
0 (kr)

pQ(r). (9)

The expansion of the Dirac function in wedge modes of the form

d(q− qq )= s
ne 0

bn cos (hnq), (10)

with application of the orthogonality of the modes with the norms Nn ,

Nn =
1
U0 g

U0

0

cos2 (hnq) dq=
1
2 01+

sin (2hnU0)
2hnU0 1=61,

1/2,
n=0
nq 0

, (11)

results in

d(q− qq )=
1
U0

s
ne 0

1
Nn

cos (hnqq ) cos (hnq). (12)
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The boundary condition (8) must be satisfied term-wise (again because of the
orthogonality of the modes), which leads to

An [H(1)
hn

(krq )H'(2)
hn (krq )−H'(1)

hn (krq )H(2)
hn

(krq )]=−j
k0

k
Z0q
U0Nn

cos (hnqq ). (13)

The bracket contains the Wronski determinant of the Hankel functions with the
value [· · ·]=−4j/(pkrq ), so one obtains

An =
p

4
k0rq

Z0q
U0Nn

cos (hnqq )=
p

U0Nn

pQ (0)
H(2)

0 (krq )
cos (hnqq ). (14)

In the last expression equation (9) has been used, and the free field sound
pressure of the source at the corner is denoted by pQ (0) because the corner is the
origin of the coordinate system (r, q).

For a separation of the corner and the cylinder contributions to the field one
applies the identity

rn =1+(rn −1)=1−2Cn , 2Cn =1− rn , (15)

to obtain

Cn =
Z0GJhn (ka)+ j

k
k0

J'hn (ka)

Z0GH(2)
hn

(ka)+ j
k
k0

H'(2)
hn (ka)

,

Cn -----#
Z0G:0

J'hn (ka)
H'(2)

hn (ka)
, Cn -----#

Z0G:a

Jhn (ka)
H(2)

hn
(ka)

, Cn ----#
ka:0

0. (16)

With this replacement the field formulations for a corner with a cylinder around
the origin become

p1(r, q)= p1,Corner + p1,Cyl

=
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

cos (hnqq )
Nn

H(2)
hn

(krq )Jhn (kr) cos (hnq)

−
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

Cn
cos (hnqq )

Nn
H(2)

hn
(krq )H(2)

hn
(kr) cos (hnq), (17a)

p2(r, q)= p2Corner + p2Cyl

=
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

cos (hnqq )
Nn

Jhn (krq )H(2)
hn

(kr) cos (hnq)

−
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

Cn
cos (hnqq )

Nn
H(2)

hn
(krq )H(2)

hn
(kr) cos (hnq). (17b)
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The sound fields in the two zones are thus split into two sums. The first sum does
not contain any information about the cylinder, and for a:0 with the consequence
Cn:0 it becomes the field formulation without the cylinder. The second sum
represents the field contribution due to the existence of the cylinder.

One can define a level difference DL(r, q) at a field point due to the existence
of the cylinder:

DLi (r, q)=20 lg =pi,Corner + pi,Cyl=−20 lg =pi,Corner=

=20 lg =1+ pi,Cyl/pi,Corner=, i=1, 2. (18)

This is the quantity which will be studied further. It should be noticed that it is
reciprocal with respect to the exchange r, qtrq , qq , because this exchange induces
also the exchange of the equations (17a)t(17b).

3. SINGLE CORNER SCATTERING WITH AN INCIDENT PLANE WAVE

Plane wave incidence is obtained by displacing the line source to infinity, rq:a,
letting qq =const and increasing the volume flow density q of the source so that
the free field sound pressure pQ (0) at the corner remains the same. Using the
asymptotic expansion of Hankel functions one obtains

H(2)
hn

(krq )
H(2)

0 (krq )
----#

rq:a
ejhnp/2 (19)

and with this, from equation (17a) (now all the field is in zone (1))

p(r, q)= pCorner + pCyl

=
2p

U0
pQ (0) s

ne 0

ejhnp/2

Nn
Jhn (kr) cos (hnqq ) cos (hnq)

−
2p

U0
pQ (0) s

ne 0

Cn
ejhnp/2

Nn
H(2)

hn
(kr) cos (hnqq ) cos (hnq). (20)

The sound pressure level difference DL(r, q) due to the cylinder is again given by
equation (18).

4. SOME GUIDELINES FOR THE REALIZATION

In this section some guidelines for the improvement of corner shielding by
absorbing cylinders shall be derived from numerical examples. The numerical
evaluations shall be restricted to a wedge angle U0 =270° (i.e., a right-angled
corner) and mostly to an incident plane wave. Sound incidence is supposed to be
normal to the corner line (i.e., kz =0, k= k0). The preference given to plane wave
excitation with normal incidence is made because of simplicity in the numerical
evaluation. Numerical problems with an excitation by a line source have been
discussed in reference [3]. They were obtained with only a limited precision in the
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computation of Bessel and Neumann functions. In the present evaluations a more
precise—and nevertheless computationally fast—method is applied for the
generation of these functions, based on the known recursions

Jn−1(z)= (2n/z)Jn (z)− Jn+1(z), Yn+1(z)= (2n/z)Yn (z)−Yn−1(z).

When used in the indicated directions, they are known to ‘‘heal’’ numerical errors
of the two initial functions and of the iteration process. If the orders hn are simple
rationals, e.g., hn = np/U0 =2n/3, n=0, 1, 2, . . . , for right-angled corners, the
functions are evaluated for three sets of orders: m+0, m+2/3, m+4/3,
m=0, 2, 4, . . . , and the wanted set for hn is composed of these after iteration over
m=0, 1, 2, . . . (or in the reverse direction). The iterations begin with two start
functions which are evaluated with high precision (about 17 digits); the final
functions have at least a 15 digit precision. The higher precision is needed here
because the argument kr may assume values as high as kr1 200.

Figure 3(a) shows the field of the sound pressure level 20 lg =p(r, q)/pQ (0)=
around a corner with a cylinder of a normalized surface admittance
Z0G=1+0·5j and with a fixed ka=2·5. Sound incidence of a plane wave with
qq =270° is parallel to one corner flank. In Figure 3(b) the angle of sound
incidence is reduced to qq =225°. Whereas the sound field on the illuminated side
is relatively simple in Figure 3(a) (small standing wave oscillations from the
superposition of the incident plane wave and a cylindrical scattered wave), it
becomes rather complex in Figure 3(b): a strong standing wave pattern of a plane
wave on front of a rigid wall, disturbed by an additional cylindrical scattered wave
from the corner. The sound field in the shadow area is simple in both cases: a steep
decrease towards the second flank. The sound pressure level increase in the
immediate neighbourhood of the flank indicates a wave which is directed towards
the flank and rigidly reflected there. This is different from the pattern with no
cylinder (see reference [3]); there the field level in the shadow zone approaches the
flank with a horizontal slope in the azimuthal direction over larger distances from
the flank as would be produced by an omnidirectional line source in the corner.
The shadow with the cylinder is deeper than for a corner without the cylinder. The
sound pressure near to the flank levels off with increasing radial distance kr.

Next, Figure 4(a) shows the sound pressure level difference DL(r, q) due to the
cylinder for a plane wave parallel to the illuminated flank, qq =270°; the cylinder
is characterized by ka=2·5 and Z0G=1−0·5j. The sound pressure level is
reduced by the cylinder by about DL1−30 dB immediately at the cylinder and
still by about DL1−10 dB at larger distances near to the flank. It is interesting
to notice that the level reduction begins already on the illuminated side: i.e., at
qq 90°. In Figure 4(b) only the angle of sound incidence is changed to qq =225°.
DL(r, q) on the illuminated side now has strong narrow peaks at places, where
the sound field without the cylinder has deep interference minima; therefore the
high peaks of DL(r, q) there have no practical importance. The level difference
DL(r, q) in the shadow zone has a similar shape as in Figure 4(a); however the
level reduction now is not as strong as there. Figure 4(c) with qq =180°, i.e., with
the sound wave incident parallel to the second flank, is remarkable insofar as it
shows that some level reduction is produced by the cylinder even in that limit case.
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Figure 3. (a) Sound pressure level around a right-angled corner with an absorbing cylinder, excited
by a plane wave incident parallel to one flank, qq =U0 =270°; (b) as (a) but for qq =225°, ka=2·5,
Z0G=1+0·5j.
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Figure 4—(Caption on opposite page).
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Figure 4. (a) Sound pressure level difference DL(r, q) around a right-angled corner produced by
an absorbing cylinder, excited by a plane wave incident parallel to one flank, qq =U0 =270°; (b)
as (a) but for qq =225°; note that peaks on the illuminated side are at places where the sound field
without the absorbing cylinder has deep standing wave minima; (c) as (b) but for qq =180°: i.e.,
gracing incidence on the second flank. ka=2·5, Z0G=1−0·5j.

For the demonstration of the influence which some parameters have on the
sound pressure level difference DL(r, q) one can take field points on the flank of
the shadow side, q=0. In Figure 5, with a cylinder characterised by ka=2·5,
Z0G=1+1j, the angle qq of sound incidence is changed; the efficiency of the
cylinder increases with increasing angle source-corner-field point. Figure 6 with
qq =225° and Z0G=1+1j shows DL(r, 0) over kr for different values of ka. It
is quite plausible that the efficiency of the cylinder increases with ka. However,
there is still the question whether there are peculiar values of ka. This aspect is
illustrated in Figures 7 and 8, both for a line source. In Figure 7 the source is at
a distance krq =11 with different source angles qq ; the receiving point is on the
second flank, q=0, at a distance kr=20. The sound pressure level difference
DL(kr, 0) is plotted against ka for a cylinder with fixed (normalized) surface
admittance Z0G=1+1j. For low ka values the order of the curves with different
qq can be reversed, but for larger ka values the efficiency of the cylinder increases
with the deflection angle source-corner-field point. And special values of ka are
not visible. Figure 8, again with DL(kr, 0) against ka, for a line source at krq =20,
qq =225° and the field point at kr=40, q=0, shows changes with the value of
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Figure 5. Sound pressure level difference DL(r, 0) produced by the absorbing cylinder along the
shadowed flank (q=0) for plane wave incidence with different source angles qq ; for the cylinder
ka=2·5 and Z0G=1+j; U0 =270°.

Z0G. Both diagrams indicate a rather monotonic increase of the cylinder efficiency
with ka and the absence of special ka values.

An important question is: which values of Z0G are necessary for large level
reductions −DL? To deduce some guidelines one can take a fixed value of ka=5
(of medium size) and a fixed field point distance kr=50 (not too small) and keep

Figure 6. Sound pressure level difference DL(r, 0) produced by the absorbing cylinder for different
ka values along the shadowed flank (q=0) for plane wave incidence with source angle qq =225°;
cylinder admittance Z0G=1+j; U0 =270°.
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Figure 7. Sound pressure level difference DL(r, 0) produced by the absorbing cylinder at the
shadowed flank (q=0, krq =11) as a function of ka for cylindrical wave incidence with different
source angles qq ; cylinder admittance: Z0G=1+j; U0 =270°, kr=20.

also qq on a fixed value (qq =270°=U0 in the examples shown). Then one can
plot DL(r, 0) over the complex plane of Z0G. Figure 9(a) is such a 3D-plot (for
an incident plane wave). The most pronounced feature of this diagram is the peak
of DL(r, 0) at the imaginary axis between about −1Q Im {Z0G}Q+1. The
maximum is at about Im {Z0G}1+0·5 but even there positive values are

Figure 8. Sound pressure level difference DL(r, 0) produced by the absorbing cylinder at the
shadowed flank (q=0, kr=40) as a function of ka for cylindrical wave incidence for some values
of the cylinder surface admittance Z0G. U0 =270°, qq =225°, krq =20.
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Figure 9. (a) Sound pressure level difference DL(r, 0) produced by the absorbing cylinder at the
shadowed flank for kr=50 over the complex plane of the normalized cylinder surface admittance
Z0G; (b) as (a) but represented as a contour plot. U0 =270°, qq =270°, ka=5.
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assumed by DL(r, 0): i.e., the cylinder produces higher levels at the field point than
the corner without the cylinder. Along the real axis the range of small (or even
negative) cylinder efficiency is restricted to about 0ERe {Z0G}Q 0·5. Outside the
region of the peak the precise value of Z0G is not very important. Note that, the
minimum value of DL(r, 0) is obtained ‘‘behind’’ the peak (as seen from the
origin), near the positive imaginary axis. The peak of DL(r, q) near the positive
imaginary axis of Z0G is produced by surface waves which exist at the cylinder
under such conditions; they may ‘‘brighten’’ the shadow behind the cylinder.

The plot of DL(r, 0) over the complex plane of Z0G can be made usable as a
design tool, if one plots it as a contour diagram. This is done in Figure 9(b) for
the special parameter values qq =225°, ka=5 and kr=50. One could suggest
drawing the curve of Z0G of a guessed absorber in this diagram for a running
frequency f. In principal that would be a contradiction, because ka, kr are
supposed to be constant. However, numerical experiments with many values of
ka, kr have shown, that the pattern and the position of the contour curves remain
about unchanged. Thus Figure 9(b) can be used as a template for complex curves
of Z0G if one avoids definite values of DL(r, 0) at the contour lines. Therefore this
graph can be used for the discussion of general guidelines in the design of cylinder
absorbers.

The absorbers here can be assumed to end with a rigid inner termination; hence
the complex curve of Z0G will start at sufficiently low frequencies in or near the
origin and will tend into the upper quadrant; its further course for increasing
frequency will be composed by a sequence of circular arcs. Absorbers with small
losses will initially remain with Z0G close to the positive imaginary axis: i.e., they
will run into the unfavourable peak of DL(r, 0). This can be avoided by two means.
One of them is to apply a low-tuned resonator with a high mass reactance; the
peak will be traversed at frequencies below the range of interest, and then the curve
of Z0G will deflect downward to the lower quadrant. However, with this method
the mass reactance will become dominant for higher frequencies and the curve then
will remain near the origin: i.e., in the range of small magnitude of DL(r, 0). The
second method to avoid the peak consists of the application of sufficiently high
losses, selected so as to permit values of Re {Z0G}1 1 or higher. If structures of
the absorber are used which show multiple resonances, then structures should be
avoided which approach the origin at every anti-resonance (like l/4 resonators or
foil resonators with low losses).

5. EXAMPLES OF REALIZATION

Somewhat independent of the structure of the absorber is the value of ka of the
cylinder: i.e., of its radius a for a given frequency range of interest which one can
select as 100E fE 2000 Hz. Then a radius a=0·5 m is a reasonable measure. If
the absorber contains air or porous absorber layers, its surface admittance should
be computed in principle with Bessel functions (see e.g., reference [7]). If the depth
of the absorber is only a part of the radius a, then it is sufficient approximation
to compute Z0G for a plane absorber arrangement (this approximation is applied
in the following examples).
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Figure 10. Sound pressure level difference DL(r, 0) due to a cylinder of radius a=0·5 m with a
locally reacting absorber surface of a glass fiber layer of thickness t=0·25 m with flow resistivity
J=5000 Pa s/m2, covered with a perforated sheet of porosity s=0·45, 1 mm thick with holes of
5 mm width. The complex curve Z0G of this absorber is shown in the inset diagram. U0 =270°,
qq =225°, r=5 m.

A very simple example for an absorber is a layer of thickness tQ a of a porous
absorber material which is made locally reacting by radial vanes. The inset in
Figure 10 shows Z0G of a layer of thickness t=0·25 m of glass fibre absorber with
a flow resistivity J=5000 Pa s/m2, covered with a perforated metal sheet (at some
distance from the porous absorber, as a mechanical protection of the absorber)
having a surface porosity of s=45%, a thickness of 1 mm and holes of 5 mm
diameter (the value of J is at the lower end of commercially available glass fibre
materials). The curve of Z0G in its complex plane is shown with the contour lines
of Figure 9(b); the frequency steps through 100 HzE fE 2000 Hz with a step of
D lg (f)=0·025 (about 1/4 of one-third octave steps). Figure 10 shows DL(r, 0)
with qq =225° of the plane wave and the field point at a distance r=5 m on the
second flank, i.e., q=0; ka changes over the range 0·9E kaE 18·3 and kr over
9E krE 183. When the curve Z0G with increasing frequency has left the
neighbourhood to the peak range, the efficiency −DL(r, 0) continuously increases.

The absorber arrangements of the cylinder in Figure 11 are the same, except a
thin, tight, limp foil (which can freely vibrate) behind the perforated sheet now
covers the layer of the glass fibre material. Such foils would be favourable as a
weather protection. In one case the surface mass density of the foil is
mf =0·1 kg/m2; in the other case mf =0·3 kg/m2. As can be seen from the Z0G
curves, the mass reactance of the foil brings these curves at higher frequencies too
close to the peak range; large positive values of DL(r, 0), i.e., higher levels with
the cylinder than without it, are assumed over a wide frequency range with the
heavier foil.
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Figure 11. Sound pressure level difference DL(r, 0) due to a cylinder of radius a=0·5 m with a
locally reacting absorber surface of a glass fiber layer of thickness t=0·25 m with flow resistivity
J=2000 Pa s/m2, covered with a perforated sheet of porosity s=0·45, 1 mm thick with holes of
5 mm width, and a tight, limp foil between perforated sheet and layer having surface mass densities
mf =0·1 kg/m2 (full line) and mf =0·3 kg/m2 (dashed line). The complex curves Z0G of these
absorbers are shown in the inset diagram. U0 =270°, qq =225°, r=5 m.

Figure 12. Scheme of a cross-layered absorber. The layers a are porous materials, backed with
foils; the layers b are air gaps, possibly with distance holders.
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A typical situation with porous sound absorber materials in the present
application is that the available flow resistivity values J are too high to permit
large Z0G values. Very low bulk densities cannot be used to reduce J, because the
mechanical stability of the material in the (relatively thick) layers would become
too low. In such situations the cross-layered absorber, see Figure 12, can be
brought in. It consists of a sequence of layers a, b oriented normal to the absorber
surface, where the layers a (thickness ta ) are commercially available mineral fibre
boards (or felts), possibly coated on one side with an aluminium foil (otherwise
foils are loosely inserted; they uncouple neighbour elements and make the total
arrangement a locally reacting absorber). The layers b (thickness tb ) are air gaps
or layers of distance holders like mats of scrambled wire. A couple of layers is
treated as a short (length d) silencer duct section the propagation constant (lowest
mode) of which can be determined with known methods, from which the average
surface admittance of the arrangement can be easily computed (for details see
reference [6], chapter 32).

Figures 13(a, b) show the surface admittance Z0G of cross-layered absorbers and
the sound pressure level difference DL(r, 0) obtained with them. The thickness of
the absorber is d=0·15 m; the layers a are of glass fibre and ta =0·05 m thick;
their flow resistivity J gives the normalized flow resistance Jta /Z0 =1. The layers
b with thickness tb =0·02 m are air gaps. In one modification of the absorber its
surface is free (solid lines), in the other modification (dashed line) the surface is
covered with a thin, limp foil with a surface mass density mf =0·1 kg/m2. The
absorbers are built in a cylinder with radius a=0·5 m, and DL(r, 0) is computed
for qq =240° at a field point at r=5 m, q=0.

The absorber for the last example of Figures 14(a, b) consists of two Helmholtz
resonators in series. The resonator volume depths are t1 =0·1 m, t2 =0·05 m; the
widths of the resonator volumes at the neck plates in azimuthal direction are 0·1
and 0·08 m, respectively, the resonator plates have slit-shaped openings 0·02 m
wide, and the neck lengths are 0·01 m. The losses are produced by flow resistances
in the neck orifices (wire meshes) with values 0·05Z0 and 0·15Z0, respectively. The
curve of Z0G is composed of two circles (which in Figure 14(a) partially become
polygons because of the finite frequency step D lg (f)=0·025). The curve of
DL(r, 0) in Figure 14(b) shows strong variations according to the repeated
approximation of the Z0G curve to the peak range.

6. CONCLUSION

The examples shown illustrate that rather broad-banded sound pressure level
reductions −DL with magnitudes higher than about 8 dB can be realized with
absorbing cylinders at a scattering corner. The reductions can be added to the
sound pressure level reductions as produced by the scattering corner alone; these
were computed in reference [3]. The improvement produced by a cylinder can be
of the order of magnitude of the corner shielding. The noise control engineer
indeed has a possibility to reduce the noise level behind an arrangement of
buildings.
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Figure 13. (a) Curves Z0G in their complex plane of cross-layered absorbers, consisting of glass
fibre boards (ta =50 mm, Jta /Z0 =1), covered with a heavy foil on one side, and tb =20 mm wide
air gaps; the absorber with the full line is d=0·15 m thick and uncovered, and the absorber with
the dashed line is d=0·25 m thick and covered with a tight, limp foil of surface mass density
mf =0·1 kg/m2. (b) U0 =270°, qq =240°, a=0·5 m, r=5 m. Sound pressure level difference
DL(r, 0) produced by a cylinder of radius a=0·5 m with the cross-layered absorbers of Figure 13(a).

It is important that the surface admittance Z0G of the cylinder has high
magnitudes and avoids the positive imaginary axis in the range of about
0ERe {Z0G}E 1. A rigid cylinder of equal size (Z0G=0) would produce only
a marginal level reduction.

Analogous computations for a thin rigid screen (U0 =2p) show that quite
similar requirements exist for absorbing cylinders on screens as for cylinders at
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Figure 14. (a) Curve of Z0G of a double Helmholtz resonator (in series) with volume depths
t1 =10 cm, t2 =5 cm, volume widths (in azimuthal direction) 10 cm, 8 cm (different according to the
conical section into which the resonators are placed), widths of the slit-shaped necks 2 cm, 1 cm,
lengths of the necks 1 cm; the orifices are covered with wire mesh of flow resistances 0·05Z0, 0·15Z0,
respectively. (b) Sound pressure level difference DL(r, 0) produced by a cylinder of radius a=0·5 m
with the double Helmholtz resonators of Figure 14(a). U0 =270°, qq =225°, a=0·5 m, r=5 m.

corners. Therefore the above examples can be used for screens also. Only the
resulting values of DL(r, q) are different—larger absolute magnitudes for screens
than for corners.

The effect of an absorbing cylinder at a corner can be qualitatively explained
as follows: For a cylinder by itself, a scattered wave would be produced, which
in the shadow zone may partially cancel out the incident wave and so determine
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the depth of the shadow. For cylinders with deep shadows due to their surface
admittance, the scattered wave is of the order of magnitude of the incident wave
and of opposite phase. The sound field behind a corner is reduced by the corner
scattering. So the cancellation efficiency of the scattered wave of the cylinder can
be very high in combination with a corner. It is known that cylinder surfaces with
a spring type reactance can guide surface waves (creeping waves) into the shadow
zone which leads to ‘‘bright’’ shadows. Under the conditions of surface wave
existence the cylinder at the corner will produce higher sound pressure levels in
the shadow zone than the corner alone.
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